Nasywa Kayla Zahra
26
XI IPS 2
Assalamualaikum Wr.Wb
Contoh 1 – Soal Translasi
Hasil translasi titik P1(3, –2) oleh T1 dilanjutkan dengan T2,
menghasilkan titik P2 (8, 7). Komponen translasi dari T1 yang sesuai adalah ….
Pembahasan:
Misalkan:
Maka,
Perhatikan proses translasi berikut.

Mencari nilai a:
3 + a + 2 = 8
a + 5 = 8
a = 8 – 5 = 3
Mencari nilai b:
-2 + b + 1 = 7
b – 1 = 7
b = 7 + 1 = 8
Jadi, nilai translasi dari T1 adalah
Jawaban: B
Contoh 2 – Soal dan Pembahasan Transformasi Geometri Refleksi
Persamaan garis 3x – y – 11 = 0 karena refleksi terhadap garis y = x, dilanjutkan oleh transformasi yang bersesuaian dengan matriks A,
adalah ….
A. –2x – 7y –11 = 0
B. 2x + 7y – 11 = 0
C. –2x – 7y + 11 = 0
D. 2y – 7x + 11 = 0
E. 2x – 7y + 11 = 0
Pembahasan:
Pertama, cari hasil bayangan dari pencerminan terhadap garis y = x.
Matriks pencerminan terhadap garis y = x adalah:

Berdasarkan rumus di atas, dapat diperoleh kesimpulan bahwa x’ = y dan y’ = x. Substitusikan nilai tersebut pada persamaan 3x – y – 11 = 0 sehingga diperoleh persamaan berikut.
3x – y – 11 = 0
3y’ – x’ – 11 = 0
– x’ + 3y’ – 11 = 0
Kedua, langkah selanjutnya adalah transformasi yang bersesuaian dengan matriks A,
Perhatikan langkah – langkahnya seperti berikut,
Sehingga, diperoleh dua persamaan berikut.
–3x’ + 2y’ = x’’
– x’ + y’ = y’’
Berikutnya, akan dicari persamaan yang senilai dengan x’ dan y’:
Mencari nilai x’:
Mencari nilai y’:
Subtitusi hasil x’ dan y’ di atas pada persamaan – x’ + 3y’– 11 = 0:
Jadi, hasil akhir transformasi dari persamaan 3x – y – 11 = 0 adalah 2x – 7y + 11 = 0.
Jawaban: E
Baca Juga: Cara Menentukan Persamaan Fungsi Kuadrat dari Gambar
Contoh 3 – Soal dan Pembahasan Transformasi Geometri Rotasi
Hasil pencerminan garis x – 2y – 2 = 0 terhadap sumbu y dan kemudian diputar dengan R[ O(0,0), 90o ] adalah ….
A. 2x – y – 4 = 0
B. x – 2y – 4 = 0
C. x – 2y – 2 = 0
D. 2x – y + 2 = 0
E. 2x – y – 4 = 0 \]
Pembahasan:
Hasil transformasi pencerminan terhadap sumbu y adalah:
Sehingga diperoleh x’ = – x dan y’ = y, selanjutnya substitusikan kedua nilai yang diperoleh pada persamaan x – 2y – 2 = 0.
x – 2y – 2 = 0
– x’ – 2y’ – 2 = 0
Transformasi selanjutnya adalah rotasi sebesar 90o yang berpusat di O(0, 0):
Substitusi nilai x’ = y’’ dan y’ = – x’’ pada persamaan –x’ – 2y’ – 2 = 0, akan diperoleh
– x’ – 2y’ – 2 = 0
– y’’ – 2(–x’’) – 2 = 0
– y’’ + 2x’’ – 2 = 0
2x’’ – y’’ + 2 = 0
Jadi, hasil pencerminan garis x – 2y – 2 = 0 terhadap sumbu y dan kemudian diputar dengan R[ O(0,0), 90o ] adalah 2x – y + 2 = 0.
Jawaban: D
Contoh 4 – Soal dan Pembahasan Transformasi Geometri Dilatasi
Dilatasi yang berpusat di titik (3, 1) dengan faktor skala 3, memetakan titik (5, b) ke titik (a, 10). Maka nilai a – b adalah ….
A. 15
B. 11
C. 5
D. 4
E. 2
Pembahasan:
Dilatasi dengan pusat (3, 1) dengan faktor skala 3 akan menghasilkan matriks transformasi berikut.
Sehingga dapat diperoleh nilai a dan b:
- a = 9
- 3b – 2 = 10
3b = 12
b = 12 : 3 = 4
Jadi, nilai a – b = 9 – 4 = 5
Jawaban: C
contoh soal 5
Persamaan peta garis 3x – 4y = 12, karena refleksi terhadap garis y – x = 0, dilanjutkan oleh transformasi yang bersesuaian dengan matriks adalah… (UAN ’03)
Pembahasan 1:
Diketahui matriksnya:
Rotasi =
Transformasi =
Persamaan garis direfleksi kemudian ditransformasi adalah:
Kemudian disubstitusikan:
Hasilnya:
Contoh Soal 6
Pencerminan terhadap sumbu x adalah A, pencerminan terhadap sumbu y adalah B dan rotasi 180o terhadap puasat O adalah H. Tentukan matriks B(A(HA)). (UMPTN ’90)
Pembahasan 2:
Diketahui:
- Pencerminan terhadap sumbu
- Pencerminan terhadap sumbu
- Rotasi 180o,
Maka:
contoh soal 7
Oleh matriks , titik
dan titik Q masing-masing ditransformasikan ke titik
dan
. Tentukan koordinat titik Q. (SPMB’04)
Pembahasan 3:
Mencari nilai a dari transformasi P:
Sehingga matriksnya:
Mencari titik Q:
Sehingga:
1. Bayangan garis y = 2x + 2 yang dicerminkan terhadap garis y= x adalah. . .
Jawaban : C
Pembahasan :
2. Persamaan bayangan kurva y = x² – 2x – 3 oleh rotasi [0, 180°], kemudian dilanjutkan oleh pencerminan terhadap garis y = -x adalah ….
A. y = x² – 2x – 3
B. y = x² – 2x + 3
C. y = x² + 2x + 3
D. x = y² – 2y – 3
E. x = y² + 2y + 3
Jawaban : D
Pembahasan :
Rotasi sudut-sudut yang lain dapat dihitung sendiri menggunakan kaidah trigonometri.
pencerminan terhadap garis y = -x
3. Persamaan bayangan dari lingkaran x² +y² +4x – 6y – 3 = 0 oleh transformasi yang berkaitan dengan matriks adalah….
A. x² + y² – 6x – 4y- 3 = 0
B. X² + y² – 6x + 4y- 3 = 0
C. x² + y² + 6x – 4y- 3 = 0
D. x² + y² – 4x + 6y- 3 = 0
E. x² + y² + 4x – 6y+ 3 = 0
Jawaban : A
Pembahasan :
4. T1 dan T2 adalah transformasi yang masing-masing bersesuaian dengan Ditentukan T = T1 o T2 , maka transformasi T bersesuaian dengan matriks…
Jawaban : E
Pembahasan :
5. Ditentukan matriks transformasi . Hasil transformasi titik (2,-1) terhadap T1 dilanjutkan T2 adalah….
A. (-4,3)
B. (-3,4)
C. (3,4)
D. (4,3)
E. (3,-4)
Jawaban : A
Pembahasan :
6. Persamaan bayangan garis y = -6x + 3 karena transformasi oleh matriks kemudian dilanjutkan dengan matriks
adalah…
A. x + 2y + 3 = 0
B. x + 2y – 3 = 0
C. 8x – 19y + 3 = 0
D. 13x + 11y + 9 = 0
E. 13x + 11y – 9 = 0
Jawaban : E
Pembahasan :
7. Bayangan titik A (4,1) oleh pencerminan terhadap garis x =2 dilanjutkan pencerminan terhadap garis x = 5 adalah titik….
A. A” (8,5)
B. A” (10,1)
C. A” (8,1)
D. A” (4,5)
E. A” (20,2)
Jawaban : B
Pembahasan :
8. T1 adalah transformasi yang bersesuaian dengan matriks dan T2 adalah transformasi yang bersesuaian dengan matriks
Bayangan A (m,n) oleh transformasi T1 o T2 adalah (-9,7). Nilai m+n sama dengan…
A. 4
B. 5
C. 6
D. 7
E. 8
Jawaban : B
Pembahasan :
9. Bayangan ∆ABC dengan A(2,1), B(6,1), C(5,3) karena refleksi terhadap sumbu y dilanjutkan rotasi (0,90°) adalah…
A. A” (-1,-2), B” (1,6) dan C” (-3,-5)
B. A” (-1,-2), B” (1,-6) dan C” (-3,-5)
C. A” (1,-2), B” (-1,6) dan C” (-3,5)
D. A” (-1,-2), B” (-1,-6) dan C” (-3,-5)
E. A” (-1,2), B” (-1,-6) dan C” (-3,-5)
Jawaban : D
Pembahasan :
10. Persamaan peta kurva y = x² – 3x + 2 karena pencerminan terhadap sumbu x dilanjutkan dilatasai dengan pusat O dan factor skala 3 adalah…
A. 3y + x² – 9x + 18 = 0
B. 3y – x² + 9x – 18 = 0
C. 3y – x² + 9x + 18 = 0
D. 3y + x² + 9x + 18 = 0
E. y + x² + 9x – 18 = 0
Jawaban : A
Pembahasan :
pencerminan terhadap sumbu x:
P ( x , y ) → P ‘ ( x , – y )
Dilatasi terhadap titik pusat O(0,0) dengan factor skala 3 :
[O, k] : P(x,y) → P'(kx, ky)
[O,3k] : P(x,y) → P'(3x, 3y)
pencerminan terhadap sumbu x dilanjutkan dilatasai
dengan pusat O dan factor skala 3 :
P(x,y) → P ‘(x, -y) → P ”(3x, -3y)
11. Luas bayangan persegipanjang PQRS dengan
P(-1,2), Q(3,2), R (3,-1), S(-1,-1)
karena dilatasi [0,3] dilanjutkan rotasi pusat O bersudut π/2 adalah…
A. 36
B. 48
C.72
D. 96
E. 108
Jawaban : E
Pembahasan :
dilatasi [0,3] :
[O,3k] : P(x,y) → P ‘(3x, 3y)
Sehingga :
P(x,y) → P” (-3y, 3x)
P(-1,2), Q(3,2), R (3,-1), S(-1,-1)
P(-1,2) → P” (-6,-3)
Q(3,2) → Q” (-6,9)
R (3,-1) → R” (3,9)
S(-1,-1) → S” (3,-3)
Buat sketsa gambarnya:
Sehingga luas transformasinya adalah :
Panjang (p) x lebar (l) = 12 x 9 = 108 satuan luas
12. Segitiga ABC dengan A(2,1), B(6,1), C(6,4) ditransformasikan dengan matriks transformasi Luas bangun hasil transformasi segitiga ABC adalah….
A. 56 satuan luas
B. 36 satuan luas
C. 28 satuan luas
D. 24 satuan luas
E. 18 satuan luas
Jawaban : E
Pembahasan :
misalkan T = maka
Luas bayangan/transformasi ∆ ABC =|det T| x luas ∆ ABC |det T| = |ad –bc| = |3-0| = 3
luas ∆ ABC :
buat sketsa gambar :
Luas bayangan/transformasi ∆ ABC =|det T| x luas ∆ ABC
= 3 x 6 = 18 satuan luas
13. Tentukan bayangan lingkaran (x-3)2 + (y+1)2 = 4 jika ditranslasikan
a. 5
b. 4
c. 3
d. 2
e. 1
Jawaban : B
Pembahasan :
Ambil sembarang titik P(a,b) pada lingkaran (x-3)2 + (y+1)2 = 4 sehingga diperoleh (a-3)2 + (b+1)2 = 4
14. ABCD adalah sebuah persegi dengan koordinat titik-titik sudut A(1,1), B(2,1), C(2,2) dan D(1,2). Tentukan peta atau bayangan dari titik-titik sudut persegi itu oleh dilatasi [O,2]!
Jawaban :
Pembahasan :
15. Jika titik A(15,8) dicerminkan terhadap garis x=7, maka bayangan titik A adalah titik A’ dengan koordinat….
Jawaban :
Pembahasan :
Baca Juga : 15+ Soal Sistem Persamaan Linear Dua Variabel (SPLDV) [+Pembahasan]
16. Titik A(a,b) dicerminkan terhadap garis x=2 menghasilkan bayangan titik A’(0,2), maka nilai (a,b) berturut-turut adalah….
a. 2 , 4
b. 4 , 2
c. 2 , 2
d. 3 , 1
e. 1 , 3
Jawaban : B
Pembahasan :
17. Titik A’(-16,24) merupakan bayangan dari titik A(x,y) yang didilatasikan dengan pusat O(0,0) dan faktor skala -4. Koordinat titik A adalah….
Jawaban :
Pembahasan :
18. Tentukan persamaan peta dari garis 3x – 5y + 15 = 0 oleh pencerminan terhadap sumbu x!
Jawaban :
Pembahasan :
19. Tentukan persamaan peta dari garis 3x-5y+15=0 oleh dilatasi terhadap pusat O(0,0) dengan faktor skala 5!
Jawaban :
Pembahasan :
20. Lingkaran x² + y² – 6x + 2y + 1 = 0. Jika ditransformasikan dengan dilatasi [O,4], persamaan bayangannya adalah….
Jawaban :
Pembahasan :
Contoh 1
Peta titik A(2, 3) oleh pencerminan terhadap garis y = x adalah ...
Jawab :
Jadi, peta titik A adalah A'(3, 2)
Contoh 2
Bayangan titik P jika dicerminkan terhadap sumbu x adalah (4, -2 ). Koordinat titik P adalah ...
Jawab :
Dari persamaan matriks diatas kita peroleh
4 = x → x = 4
-2 = -y → y = 2
Jadi, koordinat titik P adalah (4, 2)
Contoh 3
Bayangan garis 2x + y - 3 = 0 jika dicerminkan terhadap pusat O adalah ...
Jawab :
Dari persamaan matriks diatas kita peroleh
x' = -x → x = -x'
y' = -y → y = -y'
Substitusi x = -x' dan y = -y' ke garis 2x + y - 3 = 0
2(-x') + (-y') - 3 = 0
-2x' - y' - 3 = 0
2x' + y' + 3 = 0
Jadi, bayangannya adalah 2x + y + 3 = 0
Matriks Rotasi (Perputaran)
Misalkan peta titik A(x, y) oleh rotasi dengan pusat O sejauh θ adalah A'(x', y'). Perhatikan gambar berikut
Dari segitiga siku-siku OBA diperoleh
x = r cos α
y = r sin α
Dari segitiga siku-siku OCA' diperoleh
x' = r cos (α + θ )
x' = r (cos α cos θ - sin α sin θ)
x' = r cos α cos θ - r sin α sin θ
x' = x cos θ - y sin θ
y' = r sin (α + θ )
y' = r (sin α cos θ + cos α sin θ)
y' = r sin α cos θ + r cos α sin θ
y' = y cos θ + x sin θ
y' = x sin θ + y cos θ
Diperoleh
x' = x cos θ - y sin θ
y' = x sin θ + y cos θ
Dalam persamaan matriks kita tulis
Jadi, matriks yang bersesuaian dengan rotasi terhadap pusat O sebesar θ adalah
Contoh 4
Titik A(-4, 3) dipetakan oleh rotasi dengan pusat O sejauh 90° searah jarum jam. Peta titik A adalah ...
Jawab :
Searah jarum jam berarti θ = -90°
Ingat :
sin (-θ) = - sin θ
cos (-θ) = cos θ
Jadi, peta titik A adalah A'(3, 4)
Contoh 5
Bayangan garis y = 2x + 1 oleh rotasi dengan pusat O sebesar 180° adalah ...
Jawab :
Dari persamaan matriks diatas diperoleh
x' = -x → x = -x'
y' = -y → y = -y'
Substitusi x = -x' dan y = -y' ke garis y = 2x + 1
-y' = 2(-x') + 1
-y' = -2x' + 1
y' = 2x' - 1
Jadi, bayangannya adalah y = 2x - 1
Misalkan peta titik A(x, y) oleh rotasi dengan pusat P(a, b) sejauh θ adalah A'(x', y'). Perhatikan gambar berikut :
Dari segitiga siku-siku PBA diperoleh
x - a = r cos α
y - b = r sin α
Dari segitiga siku-siku PCA' diperoleh
x' - a = r cos (α + θ)
x' - a = r (cos α cos θ - sin α sin θ)
x' - a = r cos α cos θ - r sin α sin θ
x' - a = (x - a) cos θ - (y - b) sin θ
y' - b = r sin (α + θ)
y' - b = r (sin α cos θ + cos α sin θ)
y' - b = r sin α cos θ + r cos α sin θ
y' - b = (y - b) cos θ + (x - a) sin θ
y' - b = (x - a) sin θ + (y - b) cos θ
Diperoleh
x' - a = (x - a) cos θ - (y - b) sin θ
y' - b = (x - a) sin θ + (y - b) cos θ
Dalam persamaan matriks kita tulis
Contoh 6
Persamaan bayangan parabola y = x2 + 2x + 1 jika dirotasi dengan pusat P(2, -3) sejauh 270° adalah ...
Jawab :
Dari persamaan matriks diatas kita peroleh
x' - 2 = y + 3 → y = x' - 5
y' + 3 = -x + 2 → x = -y' - 1
Substitusi x dan y ke parabola y = x2 + 2x + 1
x' - 5 = (-y' - 1)2 + 2(-y' - 1) + 1
x' - 5 = (y')2 + 2y' + 1 - 2y' - 2 + 1
x' - 5 = (y')2
(y')2 = x' - 5
Jadi, persamaan bayangannya adalah y2 = x - 5
Matriks Dilatasi (Perkalian)
Misalkan peta titik A(x, y) oleh dilatasi dengan pusat O dan faktor skala k adalah A'(x', y'). Perhatikan gambar berikut :
Sebagai catatan, titik A'(x', y') dapat berada disepanjang garis m, tergantung nilai k.
Berdasarkan gambar diatas, koordinat A'(x', y') dapat kita tulis dalam persamaan
x' = kx ⇔ x' = kx + 0y
y' = ky ⇔ y' = 0x + ky
Dalam persamaan matrik kita tulisdengan matriks dilatasinyaUntuk pusat (a, b), persamaan matriksnya adalah
Contoh 7
Persamaan bayangan lingkaran x2 + y2 = 5 oleh dilatasi dengan pusat O dan faktor skala 2 adalah ...
Jawab :
https://soalkimia.com/contoh-soal-transformasi-geometri/
Dari persamaan matriks diatas kita peroleh
x' = 2x → x = x'
y' = 2y → y = y
Substitusi x dan y ke persamaan x2 + y2 = 5
(x')2 + (y')2 = 5
(x')2 + (y')2 = 5 (kali 4)
(x')2 + (y')2 = 20
Jadi, bayangannya adalah x2 + y2 = 20
Contoh 8
Peta titik R(1, 3) oleh dilatasi dengan pusat (-2, 4) dan faktor skala -2 adalah ...
Jawab :
Titik R : (x, y) = (1, 3)
Pusat dilatasi : (a, b) = (-2, 4)
Faktor skala : k = -2
Peta titik R : (x', y') = ?
Persamaan matriksnya
Dari persamaan matriks diatas kita peroleh
x' + 2 = -6 → x' = -8
y' - 4 = 2 → y' = 6
Jadi, peta titik R adalah R'(-8, 6)
https://smatika.blogspot.com/2017/11/matriks-transformasi-geometri.html
https://soalkimia.com/contoh-soal-transformasi-geometri/
https://idschool.net/sma/rumus-pada-transformasi-geometri-translasi-refleksi-rotasi-dan-dilatasi/
https://www.studiobelajar.com/transformasi-geometri/
Tidak ada komentar:
Posting Komentar